Synthesis of (4Z)-4-(Arylmethylidene)-5-ethoxy-1,3-oxazolidine-2-thiones by the Reaction of Ethyl (2Z)-3-Aryl-2-isothiocyanatoprop-2-enoates with Organolithium Compounds

by Kazuhiro Kobayashi*, Kosuke Ezaki, and Hiroo Hashimoto

Division of Applied Chemistry, Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan (phone/fax: +81-857-315263; e-mail: kkoba@chem.tottori-u.ac.jp)

A convenient one-pot method for the preparation of (4Z)-4-(arylmethylidene)-5-ethoxy-1,3-oxazolidine-2-thiones **2** and **3** from ethyl (2Z)-3-aryl-2-isothiocyanatoprop-2-enoates **1**, which can be easily prepared from ethyl 2-azidoacetate and aromatic aldehydes, has been developed. Thus, these α -isothiocyanato α , β -unsaturated esters were treated with organolithium compounds, including lithium enolates of acetates, to provide 5-substituted (4Z)-4-(arylmethylidene)-5-ethoxy-1,3-oxazolidine-2-thiones, **2**, and 2-[(4Z)-(4-arylmethylidene)-5-ethoxy-2-thioxo-1,3-oxazolidin-5-yl]acetates, **3**.

Introduction. – 1,3-Oxazolidine-2-thiones are important heterocycles, because some compounds with this heterocyclic unit have been reported to exhibit biological activities [1]. The most common method for the preparation of 1,3-oxazolidine-2thiones is based on the reaction of 2-aminoethanols with $CSCl_2$ or CS_2 [2]¹). On the other hand, we recently demonstrated that 4-substituted 4-alkoxy-1,4-dihydrobenzoxazine-2-thiones could be obtained by the reaction of 2-isothiocvanatobenzoates with organolithium compounds, including lithium enolates of esters and tertiary acetamides [3]. This success encouraged us to investigate the possibility of the formation of 4-(arylmethylidene)-1,3-oxazolidine-2-thiones by the reaction of 3-aryl-2-isothiocyanatoprop-2-enoates with organolithium compounds. In this article, we wish to describe the results of our study, which provide a convenient method for the preparation of 5alkyl(or aryl)-(4Z)-4-(arylmethylidene)-5-ethoxy-1,3-oxazolidine-2-thiones 2 and ethyl 2-[(4Z)-4-(arylimethylidene)-5-ethoxy-2-thioxo-1,3-oxazolidin-5-yl]acetates 3 by thereaction of ethyl (2Z)-3-aryl-2-isothiocyanatoprop-2-enoates 1 with alkyl(or aryl)lithium and lithium enolates of acetates, respectively. To date, there have been no reports on the synthesis of these types of 1,3-oxazolidine-2-thiones.

Results and Discussion. – The one-pot synthesis of (4Z)-5-alkyl(or aryl)-4-(arylmethylidene)-5-ethoxy-1,3-oxazolidine-2-thiones **2** from ethyl (2Z)-3-aryl-2-isothiocyanatoprop-2-enoates **1** was accomplished as outlined in *Scheme 1*. The starting materials **1** were easily prepared by the successive treatment of ethyl (2Z)-3-aryl-2azidoprop-2-enoates, derived from ethyl 2-azidoacetate and aromatic aldehydes [4],

¹) A method *via* the reaction of NH₄SCN, acid chloride, and bromopyruvate or 2-chloroacetoacetate has been published [2d].

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

with Ph₃P and CS₂ under conditions reported by Sun and co-workers [5]. We started this study by reacting (2Z)-2-isothiocyanato-1-phenylprop-2-enoates (1a) with BuLi in THF at -78° . After aqueous workup, followed by purification using column chromatography, the desired product, (4Z)-5-butyl-5-ethoxy-4-(phenylmethylidene)-1,3-oxazolidine-2-thione (2a), was obtained as a single stereoisomer in 77% yield. The structure of 2a was determined on the basis of its spectroscopic data. Mass spectrometry and elemental analysis established the molecular formula of the product as $C_{16}H_{21}NO_2S$. The IR spectrum showed absorption bands at 3216, 1685, and 1190 cm⁻¹ due to N–H, C=C, and C=S groups, respectively. The ¹³C-NMR spectrum exhibited 14 signals including a signal at 185.81 ppm assignable to the thiocarbamate C-atom. The ¹H-NMR data are in good agreement with the structure of **2a** (see *Exper. Part*). We determined the configuration of the C=C bond as (Z), because isomerization, during the reaction sequence, or the workup and purification process appears to be impropable. When the other four starting materials, 1b-1e, were treated with five organolithium compounds including BuLi, the corresponding desired products 2b - 2h were obtained in comparable yields, as compiled in *Table 1*. The highly selective attack of an organolithium compound on the ester C=O group of **1** in a 1,2-addition fashion, followed by the quick cyclization of the resulting lithium 1-aryl-3-ethoxy-2-isothiocyanatoalk-1-en-3-yl oxide intermediates A by the attack of alkenyl oxide on the isothiocyanate C-atom (before elimination of ethoxide), is assumed to take place to give the expected products 2.

Entry	1	Ar	R	2	Yield ^a) [%]
1	1 a	Ph	Bu	2a	77
2	1b	$4-Me-C_6H_4$	Ph	2b	72
3	1b	$4-Me-C_6H_4$	'Bu	2c	71
4	1b	$4-Me-C_6H_4$	Thiophen-2-yl	2d	67
5	1c	$4-Cl-C_6H_4$	Me	2e	63
6	1d	4-MeO-C ₆ H ₄	Me	2f	64
7	1e	Thiophen-2-yl	Bu	2g	68
8	1e	Thiophen-2-yl	Ph	2h	79

Table 1. Preparation of (4Z)-4-Arylidene-1,3-oxazolidine-2-thiones 2

With the above-mentioned results in hand, the preparation of 2-[(4Z)-4-(arylmethylidene)-5-ethoxy-2-thioxooxazolidin-5-yl]acetates**3**by the reaction of**1**with lithium enolates of acetates was then addressed, as depicted in*Scheme 2*. A similar

addition-cyclization sequence, as described above for the preparation of **2**, also proceeded cleanly to afford, after the subsequent aqueous workup, the desired products **3** in fair yields, as collected in *Table 2*. Unfortunately, it should be noted that attempts to obtain $2 \cdot [(4Z) \cdot 4 \cdot (arylmethylidene) \cdot 2 \cdot thioxo \cdot 1, 3 \cdot oxazolidin \cdot 5 \cdot yl] \cdot N, N$ -dimethylacetamides using *N*, *N*-dimethylacetamide in place of acetates were unsuccessful. The reactions resulted in the formation of rather complicated mixtures of products, from which only a very low yield of the desired product contaminated with structurally undefined products was obtained in each case (results not shown in *Table 2*).

Table 2. Preparation of 2-[(4Z)-4-Arylidene-2-thioxo-1,3-oxazolidin-5-yl]acetates 3

Entry	1	Ar	R	3	Yield ^a)[%]
1	1 a	Ph	^t Bu	3a	77
2	1c	$4-Cl-C_6H_4$	^t Bu	3b	62
3	1d	$4 - MeO - C_6H_4$	^t Bu	3c	69
4	1d	$4 - MeO - C_6H_4$	Et	3d	61
5	1e	Thiophen-2-yl	^t Bu	3e	68
^a) Yields of	isolated produ	cts.	Bu	36	08

In conclusion, the aforementioned results demonstrate that the reaction of (2Z)-3aryl-2-isothiocyanatoprop-2-enoates with organolithium compounds, including lithium enolates of acetates, provides a facile method for the preparation of a new type of 1,3oxazolidine-2-thiones, *i.e.*, 5-substituted (4Z)-4-(arylmethylidene)-1,3-oxazolidine-2thiones. As the starting materials are readily available, and the manipulations are very simple, the present method may be valuable in organic synthesis.

Experimental Part

General. All of the org. solvents used in this study were dried on appropriate drying agents and distilled prior to use. TLC: Merck silica gel 60 PF₂₅₄. Column chromatography (CC): Wako Gel C-200E. M.p.: Laboratory Devices MEL-TEMP II apparatus; uncorrected. IR Spectra: Perkin–Elmer Spectrum65 FT-IR spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H-NMR Spectra: JEOL ECP500 FT NMR spectrometer, at 500 MHz or JEOL LA400 FT NMR spectrometer at 400 MHz; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ¹³C-NMR Spectra: Bruker Biospin AVANCE II 600 at 150 MHz, JEOL ECP500 FT NMR spectrometer at 125 MHz, or JEOL LA400 FT NMR spectrometer at 100 MHz; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard. EI-MS (70 eV): JEOL JMS AX505 HA spectrometer; in m/z (rel. %). HR-MS (DART[®], pos.): Thermo Scientific Exactive spectrometer; in m/z.

Ethyl (2Z)-2-*isothiocyanato-3-phenylprop-2-enoate* (1a) was prepared from ethyl (2Z)-2-azido-3-phenylprop-2-enoate as described in [5]. BuLi was supplied by *Asia Lithium Corporation*. All other chemicals used in this study were commercially available.

(2Z)-3-Aryl-2-isothiocyanatoprop-2-enoates **1b** – **1e** were prepared from the respective azides under the conditions used for the preparation of **1a**.

Ethyl (2Z)-2-*Isothiocyanato-3-(4-methylphenyl)prop-2-enoate* (**1b**). Yield: 49%. White solid. M.p. $53-54^{\circ}$ (hexane). IR (KBr): 2030, 1724, 1260. ¹H-NMR (400 MHz): 1.41 (t, J = 6.8, 3 H); 2.40 (s, 3 H); 4.38 (q, J = 6.8, 2 H); 7.24 (s, 1 H); 7.26 (d, J = 7.3, 2 H); 7.72 (d, J = 7.3, 2 H). Anal. calc. for C₁₃H₁₃NO₂S (247.31): C 63.13, H 5.30, N 5.66; found: C 62.91, H 57.38, N 5.61.

Ethyl (2Z)-3-(4-*Chlorophenyl*)-2-*isothiocyanatoprop*-2-*enoate* (**1c**). Yield: 64%. White solid. M.p. 107–109° (hexane/Et₂O). IR (KBr): 2047, 1718, 1626, 1260. ¹H-NMR (500 MHz): 1.41 (t, J=6.9, 3 H); 4.38 (t, J=6.9, 2 H); 7.21 (s, 1 H); 7.40 (d, J=8.4, 2 H); 7.76 (d, J=8.4, 2 H). Anal. calc. for C₁₂H₁₀ClNO₂S (267.73): C 53.83, H 3.76, N 5.23; found: C 53.65, H 4.04, N 5.22.

Ethyl (2Z)-2-*Isothiocyanato-3-(4-methoxyphenyl)prop-2-enoate* (**1d**). Yield: 56%. Pale-yellow oil. $R_{\rm f}$ (THF/hexane 1:20) 0.25. IR (neat): 2062, 1716, 1617, 1269. ¹H-NMR (500 MHz): 1.40 (t, J = 7.4, 3 H); 3.86 (s, 3 H); 4.37 (q, J = 7.4, 2 H); 6.95 (d, J = 8.6, 2 H); 7.23 (s, 1 H); 7.80 (d, J = 8.6, 2 H). Anal. calc. for $C_{13}H_{13}NO_{3}S$ (263.31): C 59.30, H 4.98, N 5.32; found: C 59.23, H 4.94, N 5.54.

Ethyl (2Z)-2-*Isothiocyanato-3-(thiophen-2-yl)prop-2-enoate* (**1e**). Yield: 78%. Pale-yellow solid. M.p. 150–152° (hexane/Et₂O). IR (KBr): 2057, 1721, 1615, 1254. ¹H-NMR (500 MHz): 1.40 (t, J = 6.9, 3 H); 4.37 (q, J = 6.9, 2 H); 7.12 (dd, J = 4.6, 3.8, 1 H); 7.43 (d, J = 3.8, 1 H); 7.51 (s, 1 H); 7.57 (d, J = 4.6, 1 H). Anal. calc. for C₁₀H₉NO₂S₂ (239.31): C 50.19, H 3.79, N 5.85; found: C 50.02, H 3.93, N 5.55.

(4Z)-5-*Butyl-5-ethoxy-4-(phenylmethylidene)-1,3-oxazolidine-2-thione* (2a). *Representative Proce dure.* To a stirred soln. of 1a (0.12 g, 0.51 mmol) in THF (4 ml) at -78° was added BuLi (1.6M in hexane, 0.51 mmol) dropwise. After 15 min, sat. aq. NH₄Cl (10 ml) was added, and the mixture was warmed to r.t. and extracted with AcOEt (3 × 10 ml). The combined extracts were washed with brine (10 ml), dried (Na₂SO₄), and concentrated by evaporation. The residue was purified by PLC (SiO₂; AcOEt/hexane 1:10) to give 2a (0.12 g, 77%). Pale-yellow oil. *R*_f (AcOEt/hexane 1:10) 0.42. IR (neat): 3216, 1685, 1465, 1190. ¹H-NMR (500 MHz): 0.92 (*t*, *J* = 7.4, 3 H); 1.24 (*t*, *J* = 6.9, 3 H); 1.34–1.51 (*m*, 4 H); 1.90–1.96 (*m*, 1 H); 2.10–2.16 (*m*, 1 H); 3.51–3.63 (*m*, 2 H); 5.66 (*s*, 1 H); 7.26 (*d*, *J* = 7.4, 2 H); 7.30 (*t*, *J* = 7.3, 1 H); 7.41 (*t*, *J* = 7.4, 2 H); 8.72 (br. *s*, 1 H). ¹³C-NMR (125 MHz): 13.84; 14.89; 22.40; 24.54; 39.23; 59.81; 102.93; 116.22; 127.43; 127.79; 129.33; 134.00; 134.11; 185.81. HR-MS: 292.1354 ([*M* + H]⁺, C₁₆H₂₂NO₂S⁺; calc. 292.1371). Anal. calc. for C₁₆H₂₁NO₂S (291.41): C 65.96, H 7.26, N 4.81; found: C 65.82, H 7.30, N 4.71.

(4Z)-5-*Ethoxy*-5-*phenyl*-4-[(4-methylphenyl)methylidene]-1,3-oxazolidine-2-thione (**2b**). White solid. M.p. 147–148° (hexane/Et₂O). IR (KBr): 3120, 1685, 1463, 1174. ¹H-NMR (400 MHz): 1.35 (t, J = 7.3, 3 H); 2.35 (s, 3 H); 3.68–3.83 (m, 2 H); 5.59 (s, 1 H); 7.11 (d, J = 8.3, 2 H); 7.19 (d, J = 8.3, 2 H); 7.41–7.44 (m, 3 H); 7.56–7.58 (m, 2 H); 8.79 (br. s, 1 H). ¹³C-NMR (150 MHz): 14.98; 21.22; 60.54; 105.52; 114.14; 125.74; 127.35; 128.60; 129.71; 129.93; 130.91; 134.12; 137.60; 137.95; 185.30. HR-MS: 326.1227 ([M + H]⁺, C₁₉H₂₀NO₂S⁺; calc. 326.1215). Anal. calc. for C₁₉H₁₉NO₂S (325.42): C 70.12, H 5.88, N 4.30; found: C 70.03, H 5.65, N 4.15.

 $\begin{array}{l} (4{\rm Z})-5\cdot(1,1-Dimethylethyl)-5-ethoxy-4-[(4-methylphenyl)methylidene]-1,3-oxazolidine-2-thione\\ (2{\rm c}). White solid. M.p. 148-150° (hexane/CH_2Cl_2). IR (KBr): 3230, 1680, 1454, 1176. ¹H-NMR (500 MHz): 1.10 (s, 9 H); 1.24 (t, J = 6.9, 3 H); 2.37 (s, 3 H); 3.48-3.61 (m, 2 H); 5.68 (s, 1 H); 7.14 (d, J = 8.0, 2 H); 7.22 (d, J = 8.0, 2 H); 8.67 (br. s, 1 H). ¹³C-NMR (150 MHz): 14.82; 21.22; 23.65; 40.28; 60.33; 104.95; 120.17; 127.37; 129.98; 131.09; 131.75; 137.79; 185.94. HR-MS: 306.1509 ([M + H]⁺, C₁₇H₂₄NO₂S⁺; calc. 306.1528). Anal. calc. for C₁₇H₂₃NO₂S (305.44): C 66.85, H 7.59, N 4.59; found: C 66.80, H 7.78, N 4.58. \end{array}$

(4Z)-5-*Ethoxy*-4-[(4-methylphenyl)methylidene]-5-(thiophen-2-yl)-1,3-oxazolidine-2-thione (2d). Pale-yellow, viscous oil. R_f (AcOEt/hexane 1:10) 0.33. IR (neat): 3239, 1684, 1461, 1166. ¹H-NMR (500 MHz): 1.34 (t, J = 6.9, 3 H); 2.37 (s, 3 H); 3.69–3.81 (m, 2 H); 5.78 (s, 1 H); 7.02 (dd, J = 5.4, 3.8, 1 H); 7.16 (d, J = 7.6, 2 H); 7.21–7.22 (m, 3 H); 7.41 (d, J = 5.4, 1 H); 8.83 (br. s, 1 H). ¹³C-NMR (125 MHz): 14.55; 20.86; 60.53; 105.64; 111.91; 126.52; 126.58; 127.10; 127.35; 129.61; 130.37; 132.89; 137.76; 140.31; 184.24. HR-MS: 332.0765 ($[M + H]^+$, $C_{17}H_{18}NO_2S_2^+$; calc. 332.0779). Anal. calc. for $C_{17}H_{17}NO_2S_2$ (331.45): C 61.60, H 5.17, N 4.23; found: C 61.54, H 5.46, N 4.19.

(4Z)-4-[(4-Chlorophenyl)methylidene]-5-ethoxy-5-methyl-1,3-oxazolidine-2-thione (**2e**). Pale-yellow solid. M.p. 109–111° (hexane). IR (KBr): 3225, 1687, 1461, 1189. ¹H-NMR (500 MHz): 1.25 (t, J = 6.9, 3 H); 1.81 (s, 3 H); 3.54–3.58 (m, 2 H); 5.62 (s, 1 H); 7.19 (d, J = 8.4, 2 H); 7.38 (d, J = 8.4, 2 H); 8.70 (br. s, 1 H). ¹³C-NMR (125 MHz): 14.87; 26.13; 60.04; 101.66; 113.83; 128.73; 129.48; 132.29; 133.53; 135.43; 185.51. HR-MS: 284.0508 ($[M + H]^+$, C₁₃H₁₅ClNO₂S⁺; calc. 284.0512). Anal. calc. for C₁₃H₁₄ClNO₂S (283.77): C 55.02, H 4.97, N 4.94; found: C 54.91, H 5.04, N 4.83.

 $\begin{array}{l} (4{\rm Z})\mbox{-}5\mbox{-}Ethoxy\mbox{-}4\mbox{-}[(4\mbox{-}methoxy\mbox{-}heny\mbo$

(4Z)-5-*Butyl-5-ethoxy-4-[(thiophen-2-yl)methylidene]-1,3-oxazolidine-2-thione* (2g). Pale-yellow, viscous oil. $R_{\rm f}$ (AcOEt/hexane 1:10) 0.33. IR (neat): 3239, 1679, 1452, 1189. ¹H-NMR (500 MHz): 0.90 (t, J = 7.6, 3 H); 1.22 (t, J = 6.9, 3 H); 1.32 – 1.47 (m, 4 H); 1.87 – 1.93 (m, 1 H); 2.08 – 2.14 (m, 1 H); 3.50 – 3.56 (m, 2 H); 5.81 (s, 1 H); 7.02 (d, J = 3.1, 1 H); 7.08 (dd, J = 5.3, 3.1, 1 H); 7.34 (d, J = 5.3, 1 H); 8.81 (br. s, 1 H). ¹³C-NMR (125 MHz): 13.78; 14.82; 22.35; 24.46; 39.14; 59.84; 96.21; 116.18; 125.15; 126.57; 127.93; 132.47; 136.60; 185.36. HR-MS: 298.0932 ([M + H]⁺, C₁₄H₂₀NO₂S⁺₂; calc. 298.0935). Anal. calc. for C₁₄H₁₉NO₂S₂ (297.44): C 56.53, H 6.44, N 4.71; found: C 56.46, H 6.53, N 4.61.

 $\begin{array}{l} (4Z)\mbox{-}5\mbox{-}bhenyl\mbox{-}4\mbox{-}[(thiophen\mbox{-}2\mbox{-}yl)\mbox{methylidene}]\mbox{-}1\mbox{,}3\mbox{-}2\mbox{-}thiones\mbox{(2h)}. Pale-yellow, viscous oil. R_{\rm f} (AcOEt/hexane 1:5) 0.41. IR (neat): 3248, 1678, 1449, 1175. ^{1}H-NMR (500 MHz): 1.34 (t, J = 7.6, 3 H); 3.67\mbox{-}3.78 (m, 2 H); 5.76 (s, 1 H); 6.96 (d, J = 3.8, 1 H); 7.04 (dd, J = 5.3, 3.8, 1 H); 7.32 (d, J = 5.3, 1 H); 7.41\mbox{-}7\mbox{-}7\mbox{-}4\mbox{-}2\mbox{-}6\mbox{,} 1\mbox{-}1\mbox{-}5\mbox{-}6\mbox{,} 1\mbox{-}1\mbox{-}3\mbox{,} 1\mbox{-}1\mbo$

1,1-Dimethylethyl 2-[(4Z)-5-Ethoxy-4-(phenylmethylidene)-2-thioxo-1,3-oxazolidin-5-yl]acetate (**3a**). Representative Procedure. To a stirred soln. of LDA (LiNⁱPr₂; 0.51 mmol), generated by the standard method from BuLi and ⁱPr₂NH, in THF (2 ml) at -78° , was added AcO'Bu (60 mg, 0.51 mmol) dropwise. After 15 min, a soln. of **1a** (0.12 g, 0.51 mmol) in THF (2 ml) was added, and stirring was continued for 10 min before sat. aq. NH₄Cl (10 ml) was added. The mixture was warmed to r.t. and extracted with AcOEt (3×10 ml). The combined extracts were washed with brine (10 ml), dried (Na₂SO₄), and concentrated by evaporation. The residue was purified by PLC (SiO₂; AcOEt/hexane 1:5) to give **3a** (0.13 g, 77%). White solid. M.p. 90–92° (hexane). IR (KBr): 3230, 1732, 1691, 1470, 1149. ¹H-NMR (500 MHz): 1.24 (t, J = 6.9, 3 H); 1.42 (s, 9 H); 2.99 (d, J = 16.0, 1 H); 3.21 (d, J = 16.0, 1 H); 3.52–3.63 (m, 2 H); 5.72 (s, 1 H); 7.26 (d, J = 8.0, 2 H); 7.30 (t, J = 7.4, 1 H); 7.41 (dd, J = 8.0, 7.4, 2 H); 8.78 (br. s, 1 H). ¹³C-NMR (150 MHz): 14.81; 27.95; 45.03; 59.42; 82.11; 103.20; 111.59; 127.39; 127.86; 129.33; 133.87; 133.92; 166.22; 185.69. LR-MS: 349 (46, M^+), 293 (68), 247 (100). Anal. calc. for C₁₈H₂₃NO₄S (349.44): C 61.87, H 6.63, N 4.01; found: C 61.80, H 6.69, N 3.97.

1,1-Dimethylethyl 2-{(4Z)-4-[(4-Chlorophenyl)methylidene]-5-ethoxy-2-thioxo-1,3-oxazolidin-5-yl/acetate (**3b**). White solid. M.p. 128–130° (hexane/AcOEt). IR (KBr): 3200, 1733, 1692, 1465, 1142. ¹H-NMR (500 MHz): 1.24 (t, J = 6.9, 3 H); 1.41 (s, 9 H); 2.98 (d, J = 16.8, 1 H); 3.20 (d, J = 16.8, 1 H); 3.52–3.59 (m, 2 H); 5.65 (s, 1 H); 7.18 (d, J = 8.4, 2 H); 7.38 (d, J = 8.4, 2 H); 8.88 (br. s, 1 H). ¹³C-NMR (125 MHz): 14.80; 27.95; 44.97; 59.48; 82.17; 101.88; 111.62; 128.67; 129.52; 132.33; 133.59; 134.40; 166.20; 185.70. HR-MS: 384.1029 ([M + H]⁺, C₁₈H₂₃ClNO₄S⁺; calc. 384.1036). Anal. calc. for C₁₈H₂₂ClNO₄S (383.89): C 56.32, H 5.78, N 3.65; found: C 56.17, H 6.01, N 3.64.

1,1-Dimethylethyl 2-{5-*Ethoxy-(4Z)-4-[(4-methoxyphenyl)methylidene]-2-thioxo-1,3-oxazolidin-5-yl/acetate* (**3c**). Pale-yellow solid. M.p. 121–123° (hexane/Et₂O). IR (neat): 3283, 1733, 1608, 1466, 1179. ¹H-NMR (500 MHz): 1.23 (t, J = 7.4, 3 H); 1.41 (s, 9 H); 2.97 (d, J = 16.6, 1 H); 3.19 (d, J = 16.6, 1 H); 3.51–3.60 (m, 2 H); 3.85 (s, 3 H); 5.66 (s, 1 H); 6.93 (d, J = 8.6, 2 H); 7.19 (d, J = 8.6, 2 H); 8.75 (br. s, 1 H). ¹³C-NMR (100 MHz): 14.80; 27.95; 45.10; 55.37; 59.34; 82.02; 103.17; 111.59; 114.74; 126.28;

128.72; 132.25; 159.15; 166.27; 185.64. HR-MS: 380.1531 ($[M + H]^+$, $C_{19}H_{26}NO_5S^+$; calc. 380.1532). Anal. calc. for $C_{19}H_{25}NO_5S$ (379.47): C 60.14, H 6.64, N 3.69; found: C 60.12, H 6.72, N 3.43.

Ethyl 2-{5-*Ethoxy*-(4Z)-4-[(4-methoxyphenyl)methylidene]-2-thioxo-1,3-oxazolidin-5-yl]acetate (**3d**). Pale-yellow, viscous oil. $R_{\rm f}$ (AcOEt/hexane 1:5) 0.23. IR (neat): 3271, 1740, 1687, 1607, 1468, 1176. ¹H-NMR (500 MHz): 1.22, 1.23 (2t, J = 6.9 each, total 6 H); 3.05 (d, J = 16.8, 1 H); 3.25 (d, J = 16.8, 1 H); 3.53 – 3.61 (m, 2 H); 3.83 (s, 3 H); 4.10 – 4.17 (m, 2 H); 5.66 (s, 1 H); 6.93 (d, J = 8.4, 2 H); 7.20 (d, J = 8.4, 2 H); 8.7 (br., 1 H). ¹³C-NMR (125 MHz): 14.03; 14.75; 43.71; 55.38; 59.34; 61.07; 103.25; 111.28; 114.67; 126.17; 128.81; 132.05; 159.13; 167.23; 185.68. HR-MS: 352.1225 ($[M + H]^+$, $C_{17}H_{22}NO_5S^+$; calc. 352.1219). Anal. calc. for $C_{17}H_{21}NO_5S$ (351.42): C 58.10, H 6.02, N 3.99; found: C 58.01, H 6.06, N 3.92.

1,1-Dimethylethyl 2-{(4Z)-5-Butyl-5-ethoxy-4-{(thiophen-2-yl)methylidene]-2-thioxo-1,3-oxazolin-5-yl}acetate (**3e**). Pale-yellow solid. M.p. 90–92° (hexane/Et₂O). IR (KBr): 3261, 1733, 1683, 1461, 1151. ¹H-NMR (500 MHz): 1.22 (t, J = 7.4, 3 H); 1.40 (s, 9 H); 2.97 (d, J = 16.6, 1 H); 3.20 (d, J = 16.6, 1 H); 3.51–3.56 (m, 2 H); 5.89 (s, 1 H); 7.02 (d, J = 4.0, 1 H); 7.08 (dd, J = 5.1, 4.0, 1 H); 7.35 (d, J = 5.1, 1 H); 8.80 (br. s, 1 H). ¹³C-NMR (125 MHz): 14.75; 27.90; 45.08; 59.51; 82.22; 96.57; 111.63; 125.24; 126.74; 127.97; 132.18; 136.45; 166.06; 185.19. HR-MS: 350.0971 ([M + H]⁺, C₁₆H₂₂NO₄S⁺₂; calc. 356.0990). Anal. calc. for C₁₆H₂₁NO₄S₂ (355.47): C 54.06, H 5.95, N 3.94; found: C 54.15, H 6.16, N 3.75.

Mrs. *Miyuki Tanmatsu* of our university is acknowledged for recording mass spectra and performing combustion analyses.

REFERENCES

- N. Tewari, S. K. Singh, B. K. Brij, S. A. Rani, PCT Int. Appl. 2010, WO 2010013223 (Chem. Abstr. 2010, 152, 215005); S. Braun, A. Botzki, S. Salmen, C. Textor, G. Bernhardt, S. Dove, A. Buschauer, Eur. J. Med. Chem. 2011, 4419; K. Harada, H. Kubo, A. Tanaka, PCT Int. Appl. 2011, WO 2011030927 (Chem. Abstr. 2011, 154, 361017); B. Lee, M. E. Jung, J. Lee, F. Vignat, P. J. Bradley, M. C. Michael, B. E. Hajagos, PCT Int. Appl. 2011, WO 2011130419 (Chem. Abstr. 2011, 155, 562953); S. Nakano, K. Takahashi, J. Takada, T. Iwamoto, K. Nagae, Y. Maruyama, Y. Shintani, T. Okada, Y. Ito, T. Kadowaki, T. Yamauchi, M. Iwabu, M. Iwabu, PCT Int. Appl. 2011, WO 2011142359 (Chem. Abstr. 2011, 155, 683703); J. M. Garcia Fernandez, E. Sanchez Fernandez, C. Ortiz Mellet, R. Risquez-Cuadro, PCT Int. Appl. 2011, WO 2011151493 (Chem. Abstr. 2011, 156, 11512); K. Harada, H. Kubo, A. Tanaka, K. Nishioka, Bioorg. Med. Chem. Lett. 2012, 22, 504; K. Harada, H. Kubo, J. Abe, M. Haneta, A. Conception, S. Inoue, S. Okada, K. Nishioka, Bioorg. Med. Chem. 2012, 20, 3242.
- [2] a) A. A. Rosen, J. Am. Chem. Soc. 1952, 74, 2994; b) Y. Wu, Y.-Q. Yang, Q. Hu, J. Org. Chem. 2004, 69, 3990; c) G. Jalce, X. Franck, B. Figadère, Eur. J. Org. Chem. 2009, 378; d) I. Yavari, Z. Hossaini, S. Souri, M. Sabbaghan, Synlett 2008, 1287.
- [3] K. Kobayashi, H. Hashimoto, Y. Kanbe, H. Konishi, Tetrahedron 2011, 67, 4535.
- [4] P. Molina, A. Tárraga, M. J. Lidón, J. Chem. Soc., Perkin Trans. 1 1990, 1727.
- [5] L.-P. Gao, M.-W. Ding, Y. Sun, Synth. Commun. 2006, 36, 1185.

Received August 16, 2012